
Suggestion for re-ordering the
velocity unknowns for M3D-C1

Presented by

S. Jardin

Nov 20, 2017

CTTS ZOOM Call

1:00 PM EST

Overview-1—Matrix Elements
• M3D-C1 is a 3D Implicit Magnetohydrodynamics Code that uses

high-order finite elements in all 3 directions

• Most of the compute time spent is in either:
1. Defining the matrix elements
2. Solving the sparse matrix equations

• We have recently sped up (1.) above by

• Rearranging loops to make better reuse of data
• Improved vectorization
• Use of BLAS intrinsics (e.g. dgemm)

• We have also implemented OpenMP to improve memory

footprint in (1.)
• Remaining bottleneck is lack of thread-safe matrix insertions

Overview-2--Solve

• Solving the sparse matrix equations has 2 elements
1. Effective preconditioners (SuperLU, STRUMPACK)
2. Iterative solve using GMRES

• Our algorithm has 3 major linear matrix solves per time-

step that can be performed sequentially
1. The velocity solve …. Vn+1

2. The magnetic field solve…Bn+1

3. The pressure solve….pn+1

• Here, we want to concentrate on the velocity solve as it is
normally the most time-consuming and has some unique
properties

Overview-3—Velocity Solve

• We now make use of the fact that couplings
within a toroidal plane are stronger than
those across planes.

• Preconditioner uses SuperLU or
STRUMPACK to perform a direct solve
within each toroidal plane.

• This is effective, but does not scale well beyond a certain size

• There are additional strong physics coupling that we can take

advantage of that would lead to smaller matrices for the
SuperLU direct solve. STRUMPACK may also be able to
make use of these couplings.

Typical Weak Scaling Result

Different colors correspond to different number of mesh
points in a given toroidal plane. Scaling is better when
increasing the number of planes than when increasing mesh
points within a plane.

M
o

re
 D

O
F

p
er

 p
la

n
e

More planes

1 1 1 1 1

2 2 2 2 2

N N N N N

     
     
     
     
     
     

B C A X Y

A B C X Y

C A B X Y

 contains all the velocity variables on plane j jX

Because each toroidal plane couples only to adjacent
toroidal planes, the full velocity matrix is of block-
tridiagonal form. Corner elements due to periodicity.

The Velocity Matrix

1

2

3

N

 contains all the velocity variables on plane ,

However, there are 3 different kind of velocity variables: , ,

j j

U 

X

1,

1,

1,

2,

2,

2,

,

,

,

j

j

j

j

j

j

j

M j

M j

M j

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

U

U

ω

χ

ω

ω

χ

U

X

χ

, contains all 12 DOF

for the variable at

node of plane

i j

U

i j 

U

,

,

 =

R

Z

RR

RZ

ZZ

i j

R

Z

RR

RZ

ZZ i j

U

U

U

U

U

U

U

U

U

U

U

U













 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

U

2 2 2R RU R   

      V

We presently do not take

into account that the 3

velocity variables

, , are very differe nt.  U

1,

1,

1,

2,

2,

2,

,

,

,

j

j

j

j

j

j

j

M j

M j

M j

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

U

U

ω

χ

ω

ω

χ

U

X

χ

1,

2,

,

1,

2,

,

1,

2,

,

j

j

M j

j

j

j

M j

j

j

M j

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

U

U

χ

χ

X

U

ω

ω

ω

χ

We propose rearranging the locations of the unknowns in the
DOF vector, putting all similar velocity components together.

Within each plane
(with M elements), the
unknown vector will
first have all the U

variables, next all the 
variables, and finally all
the  variables.

The rational for this is
that these variables
couple most strongly to
themselves.

8/4/2011

9

Number of velocity variables

1 2 3

|E
ig

e
n

v
a
lu

e
|

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

Fast Wave
MAX/MIN =7.3 E4

Alfven Wave
MAX/MIN =9.9 E4

Slow Wave
MAX/MIN =1.46 E6

 
 

 

  
  

   
     

Original matrix:
MAX/MIN= 1013

M3D-C1 can be run with 1, 2, or 3 velocity variables. Tracking
the eigenvalues shows how they separate into 3 groups

U  U   

Ei
ge

n
va

lu
e

U

Number of velocity variables

Annihilation operators
split this into 3 loosely
connected matrices,
each with a condition
number much less
than original matrix

 
 

 

 
 

 

22 2

12 13 12 13 12 13

21 23 21 23 21 23

31 32 31 32 31 321 11

12 13 12 13 12 13

21 23 21 23

31 32 3

33 33 33

33 33

2 22

1 322 2

1

22 22

1 11 11

11 11 11

b c a

b c a

a b

b b c c a a

b b c c a a

b b c c a a

a b

a a b b c

b c a

c c

a a b b c

a a b b

a b

     
     
     
         

  
  
  
     

 
 

 

 
 

 

33

3

22

22

21 23

31 32 2

12 13 12 13 12 13

21 2

11

3 21 23 21 2

3 33 3

11

22

3

322

31 32 31 3

1

2

1

31 32N N N

c

c c

c c

c

c a

a a b b

c c a a b b

c c a a b

c

c a b

b

b b

c a






  
  
  
   
     
     
     
         
     
     
     

         

RHS

   
   
   
      
   
   
   
      
   
   
   
      
   
   
   

       

ω

χ

χ

U

U

U

ω

ω

χ

Instead of a single block for each plane, we now will have 3 blocks for
each plane. This should be more efficient and more parallel.

New form for velocity matrix

Summary
• We propose reordering the unknowns for the velocity vector

so that all similar velocity types (U, , ) are ordered to be
adjacent to one another on each plane.

• This will result in 3 times the number of blocks in the block-
Jacobi solve…increased concurrency and smaller direct
solves.

• This will require help from SCOREC to reorder the unknowns
on each plane.

• STRUMPACK may also be able to take advantage of this
reordering.

• This is a generalization of using knowledge of the “physics
couplings” to produce diagonally dominant block matrix.

